Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437090

RESUMO

We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae, Myoviridae, and Podoviridae) are represented.

2.
Genome Announc ; 5(44)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097454

RESUMO

We report here the genome sequences of six newly isolated bacteriophages infecting Arthrobacter sp. ATCC 21022. All six have myoviral morphologies and have double-stranded DNA genomes with circularly permuted ends. The six phages are closely related with average nucleotide identities of 73.4 to 93.0% across genomes lengths of 49,797 to 51,347 bp.

3.
Genome Announc ; 5(45)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122859

RESUMO

Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, ranging from 15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster AN Arthrobacter phages.

4.
Genome Announc ; 5(45)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122860

RESUMO

Caterpillar, Nightmare, and Teacup are cluster AU siphoviral phages isolated from enriched soil on Arthrobacter sp. strain ATCC 21022. These genomes are 58 kbp long with an average G+C content of 50%. Sequence analysis predicts 86 to 92 protein-coding genes, including a large number of small proteins with predicted transmembrane domains.

5.
PLoS One ; 12(7): e0180517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715480

RESUMO

The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.


Assuntos
Arthrobacter/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Variação Genética , Genômica , Genoma Viral/genética
6.
Nat Microbiol ; 2: 16251, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067906

RESUMO

Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.


Assuntos
Micobacteriófagos/fisiologia , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/virologia , Prófagos/fisiologia , DNA Viral/genética , Variação Genética , Genoma Bacteriano , Genoma Viral , Ligases/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Prófagos/enzimologia , Prófagos/genética , Proteínas Virais/genética
7.
Genom Data ; 9: 4-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27330994

RESUMO

In an effort to better understand the mechanism by which blue light inhibits the growth of Staphylococcus aureus in culture, a whole transcriptome analysis of S. aureus isolate BUSA2288 was performed using RNA-Seq to analyze the differential gene expression in response to blue light exposure. RNA was extracted from S. aureus cultures pooled from 24 1 ml well samples that were each illuminated with a dose of 250 J/cm(2) of 465 nm blue light and from control cultures grown in the dark. Complementary DNA libraries were generated from enriched mRNA samples and sequenced using the Illumina MiSeq Next Generation Sequencer. Here we report one type of analysis that identified 32 candidate genes for further investigation. Blue light has been shown to be bactericidal against S. aureus and is a potential alternative therapy for antibiotic resistant organisms. The mechanism for the inactivation of bacteria is hypothesized to involve reactive oxygen species. These RNA-Seq results provide data that may be used to test this hypothesis. The RNA-Seq data generated by these experiments is deposited in Gene Expression Omnibus (Gene accession GSE62055) and may be found at NCBI (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62055).

8.
PLoS One ; 10(3): e0118725, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742016

RESUMO

Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.


Assuntos
DNA Viral , Genoma Viral , Micobacteriófagos/genética , Variação Genética , Genômica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...